US009477696B2

a2 United States Patent (10) Patent No.: US 9,477,696 B2
Helsley et al. 45) Date of Patent: Oct. 25,2016
(54) SERIALIZING RESOURCE UTILIZATION (56) References Cited

USING HARDWARE BUILT-IN FUNCTIONS
U.S. PATENT DOCUMENTS

(71) Applicants:David Helsley, Glastonbury, CT (US);

X . 6,128,710 A * 10/2000 Greenspan GOGF 9/526
Lawrence Lee, Chino Hills, CA (US) reenspan 711/150
2011/0082962 Al1* 4/2011 Horovitz GOG6F 11/301
(72) Inventors: David Helsley, Glastonbury, CT (US); 711/6
Lawrence Lee, Chino Hills, CA (US) 2011/0145827 Al1* 6/2011 Songccccocvvvvvenene. GOG6F 7/78
’ ’ 718/102
(73) Assignee: CA, Inc., New York, NY (US) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Thu-Nguyet Le
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Baker Botts L.L.P.

U.S.C. 154(b) by 373 days.

57 ABSTRACT
(21) Appl. No.: 14/206,467 A method includes identifying a first value of a lock word
corresponding to a data structure, by a process in a plurality
(22) Filed: Mar. 12, 2014 of processes that each have access to the data structure. The
method also includes copying the data structure to a corre-
. o sponding shadow record. The method additionally includes
(65) Prior Publication Data modifying the shadow record with a desired update for the
US 2015/0261790 Al Sep. 17, 2015 data structure, and atomically updating the data structure
and the lock word, by the process, using a hardware built-in
(51) Int. CL function. The updating includes identifying a second value
GO6F 17/30 (2006.01) of the lock word and determining whether the first value of

the lock word and the second value of the lock word are
equivalent. The method additionally includes, in response to
determining that the first value of the lock word and the
second value of the lock word are equivalent, replacing the

(58) Field of Classification Search data structure with the shadow record and incrementing the
CPC oo GOGF 17/30289; GOGF 17/30345 jock word.

USPC ot 707/803, 802, 800
See application file for complete search history. 20 Claims, 3 Drawing Sheets

(52) US.CL
CPC ... GOGF 17/30289 (2013.01); GOGF 17/30345
(2013.01)

100

10 f

H
MAINFRAME

20
205 PR d

WENCRY
SRALIEDACCESS | 44
PROCESS
PROCESS
PROCESS
SHADOW DATA T2
STRUCTLRE COPY

DATA STRUCTURE

| 126

3

CPU 44 AH
POINTER POINTER

@ Lok wom |~ 2%

U.S. Patent Oct. 25, 2016 Sheet 1 of 3 US 9,477,696 B2

100
10 z
\
MAINFRAME
20
2/05 LPAR d
L 26
MEMORY |
SERALZED ACCESS | /[<%
PROCESS
124
| PROCESS -
105
| PROCESS -
SHADOWDATA | 4| 28
STRUCTURE COPY
42
DATA STRUCTURE
CPU 44~ —46
| PONTER | | POINTER |
30
o LOcK worp |~ 20
32

FIG. 1

U.S. Patent Oct. 25, 2016 Sheet 2 of 3 US 9,477,696 B2

200

z

REQUEST ACCESS TO PROTECTED RESOURCE

210

220~ DETERMINE VALUE OF LOCK WORD FOR A
LINKED LIST

220~ COPY THE LINKED LIST TO A SHADOW RECORD

240~/ MODIFY THE SHADOW RECORD WITH AN
UPDATE

250 ~_ ATOMICALLY EXECUTE COMPARE SWAP AND
TRIPLE STORE INSTRUCTION

260
INSTRUCTION EXECUTED NO

SUCCESSFULLY?

270~ CONTINUE PROCESSING

FIG. 2

U.S. Patent Oct. 25, 2016 Sheet 3 of 3

US 9,477,696 B2

42
[[PROCESS |~24 PROCESS |~25 B0~ JLOCKWORD] | RESOURCE |

GET VALUE OF LOCK WORD |
- : VALLE
CREATE SHADOW COPY OF RESOURCE
i : COPY OF RESOLRCE
i_‘—_|UPDATE SHOON COPY |
= OF RESOURCE 7 v of Lock woeo |
L INTIAUZE CONPARE. | VALE |
| OWAP TRFLE STORE. CREATE SHADOW COPY (F RESOLRCE !
| | COPY OF RESOLRCE
: | STORE RESOLRCE
I EYECUTE INSTRLCTION |
= ATOMCALLY [UPDATELOCK WORD

= INSTRUCTION EXECUTED
|--J SUCCESSFULLY

FIG. 5

|:| UPDATE SHADOW COPY OF RESOLRCE

1 INITIALIZE COMPARE SWAP TRIPLE
STORE INSTRUCTION

I_t' EXECUTE INSTRUCTION ATOMICALLY

I:] INSTRUCTION FAILED TO EXECUTE

GET VALUE OF LOCK WORD

VALUE

!CREATE SHADOW COPY OF RESOURCE
[COPY OF RESOURCE

i___| UPDATE SHADOW COPY OF RESOLRCE

— INTIALIZE COMPARE SWAP TRIPLE
STORE INSTRUCTION

i UPDATE LOCK WORD

— EXECUTE INSTRUCTION
ATOMCALLY STORE RESOURCE

t--- INSTRUCTION EXECUTED
|‘-J SUCCESSFULLY

US 9,477,696 B2

1
SERIALIZING RESOURCE UTILIZATION
USING HARDWARE BUILT-IN FUNCTIONS

BACKGROUND

The disclosure relates generally to resource utilization,
and specifically to serializing resource utilization using
hardware built-in functions.

SUMMARY

According to one embodiment of the disclosure, a method
includes identifying a first value of a lock word correspond-
ing to a data structure, by a process in a plurality of
processes that each have access to the data structure. The
method also includes copying the data structure to a corre-
sponding shadow record. The method additionally includes
modifying the shadow record with a desired update for the
data structure, and atomically updating the data structure
and the lock word, by the process, using a hardware built-in
function. The updating includes identifying a second value
of the lock word and determining whether the first value of
the lock word and the second value of the lock word are
equivalent. The method additionally includes, in response to
determining that the first value of the lock word and the
second value of the lock word are equivalent, replacing the
data structure with the shadow record and incrementing the
lock word.

Other features and advantages of the present disclosure
are apparent to persons of ordinary skill in the art in view of
the following detailed description of the disclosure and the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the configurations
of the present disclosure, needs satisfied thereby, and the
features and advantages thereof, reference now is made to
the following description taken in connection with the
accompanying drawings.

FIG. 1 illustrates a block diagram of a system for serial-
izing resource utilization using hardware built-in functions
in accordance with a particular non-limiting embodiment of
the present disclosure.

FIG. 2 illustrates a flowchart of a method for serializing
resource utilization using hardware built-in functions in
accordance with a particular non-limiting embodiment of the
present disclosure.

FIG. 3 illustrates a sequence diagram of two concurrently
running processes in a system for serializing resource utili-
zation using hardware built-in functions in accordance with
a particular non-limiting embodiment of the present disclo-
sure.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described
herein in any of a number of patentable classes or context
including any new and useful process, machine, manufac-
ture, or composition of matter, or any new and useful
improvement thereof. Accordingly, aspects of the present
disclosure may be implemented entirely in hardware,
entirely in software (including firmware, resident software,
micro-code, etc.) or combining software and hardware
implementation that may all generally be referred to herein
as a “circuit,” “module,” “component,” or “system.” Fur-

2 <

10

15

20

25

30

35

40

45

50

55

60

65

2

thermore, aspects of the present disclosure may take the
form of a computer program product embodied in one or
more computer readable media having computer readable
program code embodied thereon.

Any combination of one or more computer readable
media may be utilized. The computer readable media may be
a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device. Program code
embodied on a computer readable signal medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any
combination of one or more programming languages,
including an object oriented programming language, such as
JAVA®, SCALA®, SMALLTALK®. EIFFEL®, JADE®,
EMERALD®, C++, C#, VBNET, PYTHON® or the like,
conventional procedural programming languages, such as
the “C” programming language, VISUAL BASIC®, FOR-
TRAN® 2003, Perl, COBOL 2002, PHP, ABAP®, dynamic
programming languages such as PYTHON®, RUBY® and
Groovy, or other programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider) or in a cloud computing environment or offered as
a service such as a Software as a Service (SaaS).

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatuses (systems) and computer
program products according to aspects of the disclosure. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in

US 9,477,696 B2

3

the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor
of a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable instruc-
tion execution apparatus, create a mechanism for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that when executed can
direct a computer, other programmable data processing
apparatus, or other devices to function in a particular man-
ner, such that the instructions when stored in the computer
readable medium produce an article of manufacture includ-
ing instructions which when executed, cause a computer to
implement the function/act specified in the flowchart and/or
block diagram block or blocks. The computer program
instructions may also be loaded onto a computer, other
programmable instruction execution apparatus, or other
devices to cause a series of operational steps to be performed
on the computer, other programmable apparatuses or other
devices to produce a computer implemented process such
that the instructions which execute on the computer or other
programmable apparatus provide processes for implement-
ing the functions/acts specified in the flowchart and/or block
diagram block or blocks.

7/OS systems host and manage complex business appli-
cations that may concurrently run on one or more mainframe
systems. These applications often compete for use of system
hardware and data resources. For example, concurrently
running processes may require concurrent access to CPU
time. zZOS Workload Manager can schedule CPU time for
the concurrent processes on one or more CPU resources. As
another example, concurrently running processes may
request access to and/or make edits to the same protected
memory space, linked list, or other data structure stored in
shared system memory. Coordinating these edits may be
problematic if memory access is not scheduled appropri-
ately.

In certain embodiments, the teachings of the present
disclosure may enable processes to perform serialized
updates to data structures stored on zZ/OS systems. Data
structures may also be chained together in a serialized
manner, such that concurrent processes may access the data
in a protected manner. In certain embodiments, a concur-
rently accessible and/or editable linked-list data structure
may be implemented on z/OS systems to provide concurrent
processes access to essential data regardless of attributes of
the calling process.

Referring to FIG. 1, a block diagram of a system 100 for
serializing resource utilization using hardware built-in func-
tions is illustrated in accordance with a particular non-
limiting embodiment of the present disclosure. System 100
includes mainframe 10 running a z/OS logical partition
(“LPAR”) 20. z/OS LPAR 20 includes memory 26 contain-
ing processes 24 and 25 and shadow data structure copy 28.
7z/OS LPAR 20 also includes serialized access process 22
which controls access safety for data structure 42 in memory
26. Mainframe 10 also includes CPU’s 30 and 32.

In certain embodiments, processes 24 and 25 concurrently
request access to data structure 42 in memory 26. Process 24
requests editing access to data structure 42 through serial-
ized access process 22. Serialized access process 22 checks
the value of lock word 50 stored in memory 26, stores the
value of lock word 50 in memory 26, and creates shadow

10

25

30

35

40

45

4

data structure copy 28 of data structure 42 in memory 26.
Process 24 makes updates to shadow data structure copy 28,
and uses serialized access process 22 to push the updates to
data structure 42 in memory 26. Serialized access process 22
initializes a compare swap and triple store hardware built-in
instruction. In certain embodiments, this instruction may be
a perform lock operation (“PLO”) instruction. The instruc-
tion is initialized such that the compare takes place on lock
word 50. The value serialized access process 22 stored for
lock word 50 is compared with the current value of lock
word 50. The instruction is further initialized such that the
triple store stores the updated values of each of pointer 44
and 46 with the updated pointers from shadow data structure
copy 28. The instruction is additionally initialized such that
lock word 50 is incremented. The compare swap and triple
store instruction is executed. The instruction may be
executed atomically. A return value is checked to determine
whether the instruction executed successfully. In certain
embodiments, the instruction may execute successfully, and
process 24 may continue execution.

In certain embodiments, the PLO instruction may not
execute successfully because, for example, the compare step
of the compare swap and triple store instruction may have
failed. For example, the compare step may have determined
that the value of lock word 50 stored by serialized access
process 22 was not equal to the current value of lock word
50. In this example, the instruction may return a code
indicating that the instruction was not successtully executed.

In certain embodiments, the compare swap and triple
store instruction may execute atomically. For example, the
instruction may not make any edits to memory 26 if an error
was encountered in one of the steps of the instruction. If the
compare step of the compare swap and triple store instruc-
tion failed, no values initialized in the triple store initializa-
tion step may be stored.

In certain embodiments, if the instruction is not executed
successfully, serialized access process 22 may restart the
update process again.

In certain embodiments, serialized access process 22 may
contain code that reads and stores a specialized data struc-
ture in memory 26. For example, the specialized data
structure may be a linked list data structure. Serialized
access capabilities may be wrapped around linked list data
structure code.

The linked list data structure code may include a linked
list node that includes previous node pointer 44 and next
node pointer 46. Each of these pointers may reside in 32 bit
memory address spaces and may point to other data structure
42 nodes. In 64 bit systems, previous node pointer 44 and
next node pointer 46 may require 64 bits of memory space
in order to address memory 26 memory spaces for other data
structure 42 nodes.

In certain embodiments, a compare swap and triple store
hardware built-in function may atomically update previous
node pointer 44 and next node pointer 46 of linked list nodes
on 32 bit systems. Corresponding functionality may be also
supported on 64 bit systems.

In certain embodiments, hardware built-in functions may
provide access to general purpose instructions. Hardware
built-in functions may instruct the compiler to generate a
hardware instruction. For example, using hardware built-in
functions in Metal C may result in generation of a hardware
instruction by the compiler. Hardware built-in functions may
include the PLO instruction.

In certain embodiments, a PLO instruction includes a
hardware instruction configured to perform atomic opera-
tions. For example, a PLO instruction may perform a

US 9,477,696 B2

5

compare and load; compare and swap; double compare and
swap; compare swap and store; compare swap and double
store; and/or a compare swap and triple store. In certain
embodiments, various PLO instructions may be utilized
without departing from the scope of the present disclosure.

In certain embodiments, the PLO instruction requires an
address to a lock, a function code that specifies the operation
to be performed, and the relevant operands. For example, the
PLO instruction may be initialized with the address of a lock
word, a function code specifying that the compare swap and
triple store operation is to be performed, and the relevant
values to store.

Referring to FIG. 2, a flowchart 200 of a method for
serializing resource utilization using hardware built-in func-
tions is illustrated in accordance with a particular non-
limiting embodiment of the present disclosure. At step 210,
access to a protected resource is requested by a process. For
example, process 24 from system 100 requests access to a
commonly accessible linked list data structure stored in
memory.

At step 220, the value of a lock word corresponding to the
linked list is determined. In certain embodiments, a serial-
ized access process checks the value of the lock word and
performs editing operations in a concurrent process safe
manner. For example, process 24 from system 100 may call
a function on serialized access process 22 designed to safely
update data structures. Serialized access process may pro-
vide a host of functions tailored to editing data structures.
For example, serialized access process 22 may provide for
operations such as list add, list tail, add tail, delete init,
various ways to walk the list, and/or other functions appro-
priate for the applicable data structure being accessed. Each
of these functions may be implemented in a concurrent
process safe manner.

In certain embodiments, serialized access process 22
monitors lock words for many data structures. When process
24 calls an editing function provided by serialized access
process 22, serialized access process 22 determines where a
lock word corresponding to the data structure being edited is
stored and determines the value of the lock word.

At step 230, the linked list is copied to a shadow record.
For example, serialized access process 22 copies a linked list
data structure to a shadow record in memory 26. As another
example, serialized access process 22 copies a node from the
linked list data structure to a shadow record.

At step 240, serialized access process 22 modifies the
shadow record of the data structure with updates. A compare
swap and triple store instruction may be initialized with the
updated shadow record data and an incremented value of the
lock word.

At step 250, the compare swap and triple store instruction
may be executed and/or dispatched. The instruction may
compare the stored value of the lock word with the current
value of the lock word. If the lock word equals the stored
value of the lock word, then the three store operations may
execute. If the lock word is not equal to the stored value of
the lock word, then an error code may be returned from
execution of the instruction. The error code may signify that
no edits to the lock word or the resource were made.

In certain embodiments, execution of this instruction may
be atomic, i.e., the instruction may only execute either all
operations successfully or none at all.

At step 260, a return code of the compare swap and triple
store PLO instruction may indicate that the instruction
executed successfully. In other embodiments, a return code
may indicate a failure. This may indicate that another
process may have been scheduled on the CPU to execute

10

15

20

25

30

35

40

45

50

55

60

65

6

modifications to the resource while the shadow record copy
and editing was being performed. In this example, process-
ing is reverted back to step 220, where the value of the lock
word is determined and stored. Execution continues down
this path until the value of the lock word determined before
copying the data structure to the shadow record equals the
value of the lock word during the atomic store operation.

In certain embodiments, one or more other processes may
carry out the functions described in accordance with serial-
ized access process 22 above. Further, this functionality
should not be limited to running in a separate process.
Features and aspects of the functionality and/or the entire
functionality of serialized access process 22 may be con-
tained in any calling processes.

In certain embodiments, processing may loop around
flowchart 200 until the PLO instruction is successfully
executed and returns the success code. In certain embodi-
ments, a timeout or loop count may be reached in which the
function executing the instruction may return an error back
to the main processing thread. This may be achieved in
source code by using a while, do while, for, or other such
conditional loop in which each step of flowchart 200 is
executed repeated until a certain timeout threshold is
reached, or the PLO instruction is successfully executed.

In certain embodiments, flowchart 200 may be imple-
mented in data structure code, i.e., the steps in flowchart 200
may be wrapped in editing functions or methods exposed by
the data structure. For example, a concurrent-use safe linked
list structure may have a variety of editing functions
exposed. An add_tail function may enable callers to add a
node to the tail of the linked list. The add_tail function code
may perform the steps of flowchart 200 in order to ensure
that all access to the linked list is performed in a concurrent-
use safe manner.

Referring to FIG. 3, a sequence diagram of two concur-
rently running processes is illustrated in a system for seri-
alizing resource utilization using hardware built-in functions
in accordance with a particular non-limiting embodiment of
the present disclosure. The sequence diagram shows pro-
cesses 24 and 25, as well as lock word 50 and resource 42
(i.e., data structure 42) from system 100. The sequence
diagram illustrates an example workflow for two processes
attempting to edit resource 42 concurrently.

In certain embodiments, z/OS systems may employ one or
more of several techniques for protecting data integrity for
shared resources. Keyed storage protection may be one such
technique that complicates system-wide locking systems.
For example, using keyed storage protection, a control key
in each storage frame is used to denote the level of protec-
tion the memory space is afforded. When concurrent pro-
cesses attempt to access a single data structure in memory,
the key associated with the request is compared to the
control key for the storage frame. If the key associated with
the request does not match the storage key, the system may
reject the request and issue a program exception interrupt.

However, the keyed storage protection system may not
satisfy certain concurrent access protection problems for
7/O8 systems. For example, if a program running in a high
key (e.g., user key 9 state), access will be denied to the
memory space regardless of whether another process is
concurrently accessing the data structure.

In certain embodiments, the serialized list structure may
provide list add, list tail, add tail, and various methods for
walking the list. These structures may be placed in existing
code. The structure may have a next and previous pointer.
The structure may further be able to tell where the structure
starts and ends based on the next and previous pointers.

US 9,477,696 B2

7

Various data structures used on other operating systems
such as, for example, Linux, may be coded and/or adapted
into z/OS systems. However, these adapted structures may
not have any locking or serialization functionality. For
example, a process may have a reference to one node in the
data structure, but when the process updates that data
structure the pointer may be referencing a different node in
the data structure. Further, other operating systems may
provide more robust data structure access serialization
libraries that are not available on z/OS.

In certain embodiments, Metal C and/or other C based
languages may be used to create data structures that provide
for serialized access and concurrent use. These programs
may have access to only limited and high level locking
mechanisms in the z/OS environment. Thus, the teachings of
the present disclosure may enable those of ordinary skill in
the art to provide flexible locking mechanisms and corre-
sponding data structures in the z/OS environment, without
using dangerous high level system locks that may jeopardize
system stability.

In certain embodiments, z/OS systems may provide an
enqueue macro and a dequeue macro. However, the enqueue
macro may require an svc instruction in order to obtain
control of the resource. This may be problematic because the
svc instruction may not be executed by code that is running
in service request blocks. Additionally, the svc instruction
may not be used by code that is running in a disabled state.

As another example, z/OS systems may provide latching
mechanisms. However, disabled callers may not be able to
use latching mechanisms.

As yet another example, zZ/OS systems may provide
spin-lock mechanisms. However, such mechanisms may not
provide sufficient granularity to enable use in this context.

As still another example, z/OS systems may provide cross
memory lock mechanisms. However, these mechanisms
may not be effective on concurrent systems running in
multiple address spaces.

As another example, z/OS systems may provide a CPU
lock mechanism. But this mechanism may not be effective
for processes running on multiple CPU’s.

High level locks such as real storage manager spin lock
may harm machine performance. Virtual storage manage-
ment additionally provides locks. However, these locks are
generally off-limits to calling processes because the stability
of the machine may be jeopardized in obtaining or applying
these locks.

In certain embodiments, the teachings of the present
disclosure may use a PLO instruction to perform serializa-
tion of an incrementing lock word value. A lock word stored
in memory is incremented every time data structure is
updated. Perform lock operations may allow other updates
to be made autonomously with respect to other callers.

In certain embodiments, the PLO instruction performs a
compare and swap on the lock word with a triple store. For
example, 32 bit pointers may be used to represent next and
previous pointers. The PLO instruction may update these
pointers with the triple store operations. Thus, a 64 bit
address/value for the node may be updated.

In certain embodiments, larger data structures with larger
storage addresses, such as 128 bit storage addresses, may be
implemented using the same systems and methods described
above.

The PLO instruction may be used on a variety of con-
current key storage protection state processes. For example,
a key 8 problem state user is generally a protected state user
(e.g., such users may only update key 8 storage). Alterna-
tively, key 0 processes may update storage regardless of the

10

20

25

30

35

40

45

50

55

60

65

8

corresponding memory key level. The PLO instruction may
enable serialized access to resources for processes running
in each of these key states, as well as other key states such
as user specific key states (e.g., key 9 users, key 10 users,
etc.). Thus, a data structure may be serialized whether the
process is a disabled caller or a key 8 problem state caller.

In certain embodiments, the data structure may corre-
spond to a linked list. The linked list may be programmed
using Metal C, C, Java, or any other programming language
available on z/OS. In certain embodiments, the data struc-
ture may be a dictionary, hash, or any other data structure
configured for serialized access on z/OS systems.

In certain embodiments, these data structures may simu-
late data structures available on other environments, such as
Linux on system Z. Thus, the teachings of the present
disclosure may enable data transfer and/or interoperability
with other operating systems. For example, data may be
transferred from a Linux on system Z partition to a z/OS
system, and may be stored in a concurrent-use safe data
structure on the z/OS system that corresponds to the data
structure on the host (i.e., Linux on system Z) system.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various aspects of the present
disclosure. In this regard, each block in the flowchart or
block diagrams may represent a module, segment, or portion
of code, which comprises one or more executable instruc-
tions for implementing the specified logical function(s). It
should also be noted that, in some alternative implementa-
tions, the functions noted in the block may occur out of the
order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially con-
currently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting
of the disclosure. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the
claims below are intended to include any disclosed structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of the present disclosure has been presented for
purposes of illustration and description, but is not intended
to be exhaustive or limited to the disclosure in the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the disclosure. The aspects of the
disclosure herein were chosen and described in order to best
explain the principles of the disclosure and the practical
application, and to enable others of ordinary skill in the art

US 9,477,696 B2

9

to understand the disclosure with various modifications as
are suited to the particular use contemplated.

What is claimed is:

1. A method, comprising:

identifying a first value of a lock word corresponding to

a data structure, by a process in a plurality of processes
that each have access to the data structure;

copying the data structure to a corresponding shadow

record;

modifying the corresponding shadow record with a

desired update for the data structure; and

atomically updating the data structure and the lock word,

by the process, using a hardware built-in function, the

updating comprising:

identifying a second value of the lock word;

determining whether the first value of the lock word
and the second value of the lock word are equivalent;

in response to determining that the first value of the
lock word and the second value of the lock word are
equivalent, replacing the data structure with the
modified corresponding shadow record; and

incrementing the lock word.

2. The method of claim 1, wherein the hardware built-in
function is configured to atomically store three values based
on the outcome of a comparison; and wherein the three
values correspond to a first pointer in the data structure, a
second pointer in the data structure, and the lock word
respectively.

3. The method of claim 1, wherein the updating the data
structure further comprises:

in response to determining that the first value of the lock

word and the second value of the lock word are not
equivalent, copying the data structure to a second
corresponding shadow record;

modifying the second corresponding shadow record with

the desired update for the data structure;

identifying a third value of the lock word; and

determining whether the second value of the lock word

and the third value of the lock word are equivalent.

4. The method of claim 1, wherein the hardware built-in
function comprises a perform lock operation (“PLO”) com-
pare swap and triple store instruction in a Z/OS system.

5. The method of claim 4, wherein atomically updating
the data structure and the lock word further comprise:

initializing the PLO instruction with:

the first value of the lock word;

an incremented value of the lock word;

a first pointer in the shadow record; and

a second pointer in the shadow record; and

executing the PLO instruction.

6. The method of claim 1, wherein the data structure is
stored in a first memory block having a first control key
indicative of a high-protection state, and the process runs in
a second memory block having a second control key state
indicative of a low-protection state.

7. The method of claim 5, wherein the PLO instruction
returns a result code upon execution, the result code indi-
cating success of the PLO instruction upon execution.

8. A computer configured to access a storage device, the
computer comprising:

a processor; and

a non-transitory, computer-readable storage medium stor-

ing computer-readable instructions that when executed

by the processor cause the computer to perform:

identifying a first value of a lock word corresponding to
a data structure, by a process in a plurality of
processes that each have access to the data structure;

15

20

25

30

40

45

50

60

10

copying the data structure to a corresponding shadow
record;
modifying the corresponding shadow record with a
desired update for the data structure; and
atomically updating the data structure and the lock
word, by the process, using a hardware built-in
function, the updating comprising:
identifying a second value of the lock word;
determining whether the first value of the lock word
and the second value of the lock word are equiva-
lent;
in response to determining that the first value of the
lock word and the second value of the lock word
are equivalent, replacing the data structure with
the modified corresponding shadow record; and
incrementing the lock word.

9. The computer of claim 8, wherein the hardware built-in
function is configured to atomically store three values based
on the outcome of a comparison; and wherein the three
values correspond to a first pointer in the data structure, a
second pointer in the data structure, and the lock word
respectively.

10. The computer of claim 8, wherein the updating the
data structure further comprises:

in response to determining that the first value of the lock
word and the second value of the lock word are not
equivalent, copying the data structure to a second
corresponding shadow record;

modifying the second corresponding shadow record with
the desired update for the data structure;

identifying a third value of the lock word; and

determining whether the second value of the lock word
and the third value of the lock word are equivalent.

11. The computer of claim 8, wherein the hardware
built-in function comprises a perform lock operation
(“PLO”) compare swap and triple store instruction in a zZ/OS
system.

12. The computer of claim 11, wherein atomically updat-
ing the data structure and the lock word further comprise:

initializing the PLO instruction with:
the first value of the lock word;
an incremented value of the lock word;

a first pointer in the shadow record; and
a second pointer in the shadow record; and
executing the PLO instruction.
13. The computer of claim 8, wherein the data structure is
stored in a first memory block having a first control key
indicative of a high-protection state, and the process runs in
a second memory block having a second control key state
indicative of a low-protection state.
14. The computer of claim 12, wherein the PLO instruc-
tion returns a result code upon execution, the result code
indicating success of the PLO instruction upon execution.
15. A computer program product comprising:
a computer-readable storage medium having computer-
readable program code embodied therewith, the com-
puter-readable program code comprising:
computer-readable program code configured to identify
a first value of a lock word corresponding to a data
structure, by a process in a plurality of processes that
each have access to the data structure;

computer-readable program code configured to copy
the data structure to a corresponding shadow record;

computer-readable program code configured to modify
the corresponding shadow record with a desired
update for the data structure; and

US 9,477,696 B2

11

computer-readable program code configured to atomi-

cally update the data structure and the lock word, by

the process, using a hardware built-in function, the

updating comprising:

identifying a second value of the lock word;

determining whether the first value of the lock word
and the second value of the lock word are equiva-
lent;

in response to determining that the first value of the
lock word and the second value of the lock word
are equivalent, replacing the data structure with
the modified corresponding shadow record; and

incrementing the lock word.

16. The computer program product of claim 15, wherein
the hardware built-in function is configured to atomically
store three values based on the outcome of a comparison;
and wherein the three values correspond to a first pointer in
the data structure, a second pointer in the data structure, and
the lock word respectively.

17. The computer program product of claim 15, wherein
the updating the data structure further comprises:

in response to determining that the first value of the lock

word and the second value of the lock word are not
equivalent, copying the data structure to a second
corresponding shadow record;

5

10

15

20

12

modifying the second corresponding shadow record with

the desired update for the data structure;

identifying a third value of the lock word; and

determining whether the second value of the lock word

and the third value of the lock word are equivalent.

18. The computer program product of claim 15, wherein
the hardware built-in function comprises a perform lock
operation (“PLO”) compare swap and triple store instruction
in a 7Z/OS system.

19. The computer program product of claim 18, wherein
atomically updating the data structure and the lock word
further comprise:

initializing the PLO instruction with:

the first value of the lock word;

an incremented value of the lock word;

a first pointer in the shadow record; and

a second pointer in the shadow record; and

executing the PLO instruction.

20. The computer program product of claim 15, wherein
the data structure is stored in a first memory block having a
first control key indicative of a high-protection state, and the
process runs in a second memory block having a second
control key state indicative of a low-protection state.

#* #* #* #* #*

